If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-40=0
a = 2; b = 1; c = -40;
Δ = b2-4ac
Δ = 12-4·2·(-40)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{321}}{2*2}=\frac{-1-\sqrt{321}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{321}}{2*2}=\frac{-1+\sqrt{321}}{4} $
| y=(-0.5(0))^2-(2*0)+1 | | 6y-12=3y+9 | | -7p+5=-42 | | 4x−5=18x+101 | | (X)=x^2+8x-20 | | -z+z=9 | | 0=-16t^2+128t-240 | | (62x+76)-(-42x+5)=0 | | 6x+1=–11 | | (8,38)m=6 | | (4a^2+3a-10)=0 | | 7+7k=-77 | | -1.8x=(x+2.13) | | (-16,-6)m=1/15 | | 9/4-2(4x+4/3)+5/2x=0 | | |5*1/2−x|=1/2 | | -26-m=104 | | 6(n+8)=-96* | | 350=280+b | | -2.25(3-x)=0 | | (12-9y/2)-2y=-7 | | t÷4-7=10 | | 3M2=(4+m) | | 9^6n=27^n-4 | | 2/3x-3/5=1/3 | | (2+5)=2x | | 0.85^x=2 | | 10+4x=5(x-6)+36 | | 2(4m+5)=-100 | | 8y^2+28y=0 | | 1^10(x+11)=-2(8-2) | | -2(2x+1)=3(4-7x) |