If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-15=0
a = 2; b = 1; c = -15;
Δ = b2-4ac
Δ = 12-4·2·(-15)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*2}=\frac{10}{4} =2+1/2 $
| w/6-2.3=-21.5 | | –3x+1+10x=x+4x=x=x=12x=18 | | 3x*2+(2x+1)=57 | | 1,5c+7=-5,5c+3 | | 10x+70=3x | | 17=7x+9x+ | | -32=3w-5 | | 4-1/5n=8 | | 6y-30=90 | | .7+2x=2.7 | | 5x-x=x/6-16/3 | | 8+2x+4x=62 | | z/12=216 | | -14x-17=-73 | | 4(3x+6)=5(x-5 | | 3/4w=11/2 | | (X^2+9x-17)=0 | | -3+2w=-15 | | 5x=75,5 | | 3w+10=64 | | w/2-8=17 | | 5(1.04)^x=12 | | 164=16t^2 | | 42x+3=512 | | t/12=36 | | -3y+-5y=8 | | -3y=-5y | | 5c-7=3c+5 | | 5=1/2(300-10x5 | | 7^x-2=3^x | | 3(6+7x=81 | | m=(1*1000+0.04*5+1000) |