2x2+x+4=(x+2)(x+2)

Simple and best practice solution for 2x2+x+4=(x+2)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x2+x+4=(x+2)(x+2) equation:



2x^2+x+4=(x+2)(x+2)
We move all terms to the left:
2x^2+x+4-((x+2)(x+2))=0
We multiply parentheses ..
2x^2-((+x^2+2x+2x+4))+x+4=0
We calculate terms in parentheses: -((+x^2+2x+2x+4)), so:
(+x^2+2x+2x+4)
We get rid of parentheses
x^2+2x+2x+4
We add all the numbers together, and all the variables
x^2+4x+4
Back to the equation:
-(x^2+4x+4)
We add all the numbers together, and all the variables
2x^2+x-(x^2+4x+4)+4=0
We get rid of parentheses
2x^2-x^2+x-4x-4+4=0
We add all the numbers together, and all the variables
x^2-3x=0
a = 1; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*1}=\frac{0}{2} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*1}=\frac{6}{2} =3 $

See similar equations:

| 8x+10.5=-3.5x-10 | | q-23.4=0.423 | | 32=t/2 | | 2m-6=3m-6 | | 5/x=1.2 | | 5(2x+4x-3x)+7-2=65 | | 3x2+3x+3=3(x2+x+3) | | 4x=482x=6 | | 2(4+x)=8x+2 | | 9.7+5.7x=25.66 | | 216^x=5 | | 10x-56=67 | | 2.7w=9.18 | | x÷5-8=22 | | 3y-180=180 | | 5g-4=62 | | (x÷5)-8=22 | | -14=2(x-2) | | 4(x+1)=4x+1 | | n-6=2nn | | -1-4x=3x+3 | | 15x=700(100) | | 15/k=k3 | | 6(8w)=8(6w) | | x+2.5*x=63 | | 25n=150 | | 4n^2-6n=-2 | | 150=1.07^x | | 3-7(x+1)=50 | | 2(4x-3)=8x-6 | | -80+9y=19 | | 108.50+x5.50=26 |

Equations solver categories