If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-6=0
a = 2; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·2·(-6)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*2}=\frac{-8-4\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*2}=\frac{-8+4\sqrt{7}}{4} $
| 1+8n=5+6n | | 2x+8–3x=–2(3x–5)–12 | | -2c-6=-2(c+3) | | x-5/10=-2 | | 12r-8=10 | | g/9-30=-22 | | 5q+3=4q+9 | | 5/4x=x+2 | | -5=3+x/4 | | 7x+9÷3=-2x÷5 | | m/7-8=-4 | | 2(x−1)=3x−17 | | 36m+4=50 | | 1/3+y/7=2 | | 3x-5=2(2x-5) | | g/3+22=27 | | (7x+9)÷3=(-2x÷5) | | 4(-2+8x)+8x=192 | | (-460)=-10(-5x+16 | | 95+(x+41)=x+78 | | 34=5u+4 | | 3v-5/8=2v-9/10 | | -2b+6=-30 | | 5d-2d=2d-18-2d | | 786=2x-32 | | 3=8h-25 | | -8(-6-4k)=6k-4 | | 48=16x-4 | | d/10+37=28 | | 6(x-3)+4x=72 | | 167t+19t16=1132 | | -6n+-15=81 |