If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-105=0
a = 2; b = 8; c = -105;
Δ = b2-4ac
Δ = 82-4·2·(-105)
Δ = 904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{904}=\sqrt{4*226}=\sqrt{4}*\sqrt{226}=2\sqrt{226}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{226}}{2*2}=\frac{-8-2\sqrt{226}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{226}}{2*2}=\frac{-8+2\sqrt{226}}{4} $
| 11+4y=41 | | 7.25+9=13.5t+14 | | 16-x/3=15 | | 2(4x+3)+9=31 | | 9(11)+18=z | | 2x*x=32 | | z+(6(11)-3)=180 | | (9x+18)+(6x-3)=180 | | n^2+49n-660=0 | | 7x+11=10x-69 | | 4x2-576=0 | | (m+4)(m+4)=25 | | -17d+18d=-19 | | 45+y=-7 | | 45−–y=–7 | | 10t+9=59 | | 62=14+4c | | 4+12a=24 | | -9n+-10=53 | | 12+7t=-9 | | v/3-1=7 | | v/3- 1=7 | | 9^y=27 | | k/3−4=4 | | 1/2f+5=17 | | 15=4j+3 | | w/2+15=18 | | w/2+ 15=18 | | c/3+10=11 | | 3x−10=6x−1 | | 2x−14=5x−2 | | X+(x+4)+0.8x=172 |