If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x+1=0
a = 2; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·2·1
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{14}}{2*2}=\frac{-8-2\sqrt{14}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{14}}{2*2}=\frac{-8+2\sqrt{14}}{4} $
| t+17/4=6 | | m−103=47 | | (2x+42)+(x-14)+x=180 | | 8w+5=4(2w+10 | | 5z-12=2z=15 | | 3-2w=-2w+20-w | | h/19=25 | | 4y-13-11=167 | | 16g=-15g=-5 | | X+29=-3x+61 | | k/15=-26 | | 4(n+(n+2)=3n-12 | | b/4+50=58 | | 9+n+8=24 | | 3x+7X+25=0 | | -20n=-19n+7 | | c+22/9=3 | | 2y+15=7(y+5) | | 568=g+218 | | 4(x+3)=21 | | c+24/10=1 | | 13t=17t-16 | | 16x+20=19x-3x+20 | | 3/2)(2x+6)=3x+9 | | 6(y-8)=-2y+16 | | -4t-10=-2t+10 | | u+14/10=3 | | g−-220=277 | | 6y+26=-2(y-5) | | 1=b/10-3 | | 7p-5=3(3p-4) | | -3c+9=-7-5c |