If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-90=0
a = 2; b = 6; c = -90;
Δ = b2-4ac
Δ = 62-4·2·(-90)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{21}}{2*2}=\frac{-6-6\sqrt{21}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{21}}{2*2}=\frac{-6+6\sqrt{21}}{4} $
| 78-6x-8=5x+20 | | 26(3)-2(3x-4)=5(x+4) | | 10^(2x-3)=4 | | 26x3-(3x-4)x2=5(x=4) | | 7x^2+53x-90=0 | | 8x-16=2x-8 | | 2(2x=+9)=4x+3-5(6-x) | | 2(2x=9)=4x=3-5(6-x) | | 4(3z-7)=65-3(4z-9) | | 33x=18x-9 | | 20*x=4 | | 5x-8=-12x+9 | | 2^n=100 | | 35/2(1/5)*2x=0 | | 35/2(1/5)*2x=0,7•5*x | | 4x+8=6x+27 | | 4x+8=6x-27 | | 2x+13=7x-32 | | 7x-32=2x+13 | | 2450=1/2a14° | | w/4-17=24 | | (-2x)×(-0.5x)=1 | | e×-4+4e-×=0 | | 5+(-3x^-1)(2x+7)=-29 | | 6k^2=-18k | | 0.5+0.25(32-x)=11.50 | | M^2-2m=24 | | 2x-18+6x-2=180 | | 3x-5=-5(x-3) | | 6(5-4y)^2=1350 | | 2n-12=8n-3 | | 2n+12=8n-3 |