If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-3=0
a = 2; b = 6; c = -3;
Δ = b2-4ac
Δ = 62-4·2·(-3)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*2}=\frac{-6-2\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*2}=\frac{-6+2\sqrt{15}}{4} $
| 52/390=x | | 1,500=75x | | -3(-2d-18)=-13d+16 | | x+2=-2+4 | | 7(x-19)=259 | | 1/4•(7.9-2.3)=1/4•(x) | | 2x+1+6x+12=18 | | 7(c+56)=4 | | 3(1x+3)=45 | | 3(4+x)+2(x-1)=5(x+2)+4 | | 3.6x-4=2.6x-4 | | 1/4•(7.9-2.3)=1/4•(x | | -3(8-4x)=-168 | | 3(2+x)5x=14 | | 4(5+x)=20 | | 1.5y=4 | | 20r-(-3r)-(-7)=-16 | | 2(1-1x)=-14 | | 2y+2y+7y-5+7y-5= | | 5x-1=2x4 | | x=4(6)=3 | | .5x+2=3 | | 16+4r-8+2r=2r+8r | | 3.6x-4=2.6-4 | | -3(10+3x)=-57 | | 31x=x+150 | | 3t+9=21 | | 4-3x-2x=-16 | | 7(-4x+10)=-126 | | -235x(1+1)=0 | | -15m-3=4(1-2m)-7(1+m) | | 4-3x-2x=-16-x4−3x−2x=−16−x |