If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x+1=0
a = 2; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·2·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{7}}{2*2}=\frac{-6-2\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{7}}{2*2}=\frac{-6+2\sqrt{7}}{4} $
| r/3=14 | | 41=h/8+38 | | (3x-1)=(7x+3) | | 4x=2^x-9 | | k/9+82=90 | | d=2= | | 2-2(2x-1)=31-x | | 137=-u+178 | | 6+10y=36 | | -2+2x=4x+5.2 | | 5=8/7x=29 | | 224=116-w | | 16w+3w-4w-15w+2w=16 | | 6x+72=10x+2 | | 3a-6a+×=8a+20-5a | | 164-w=78 | | 420=2=(r+10) | | x^2-0.9x+0.2025=0 | | 420=29=(r | | 12=-w+203 | | 14x+-8=2x+16 | | -5x+32=180 | | 13y-12y+y=14 | | 2(2x-5)=5x-9 | | 14m-5m-4m-m-3m=11 | | p/9+78=85 | | (4x-20)+(5x-16)+90=90 | | 9x+16=5x+4 | | 6y+9=4y+8 | | 4(2r-)=-2(3r+16) | | 2c-57=c+15 | | Y=106.63x-146 |