If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x=4
We move all terms to the left:
2x^2+5x-(4)=0
a = 2; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·2·(-4)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{57}}{2*2}=\frac{-5-\sqrt{57}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{57}}{2*2}=\frac{-5+\sqrt{57}}{4} $
| 2x2+5x=-4 | | 115=x+(x*5/100) | | 5x2+2x=10 | | 8x-2=71 | | 28-3*8=x | | 4n-20=2n | | 53+8x=5 | | x-3*8=4 | | 2/5x7=9 | | 4(7x-14)=28 | | (2,3)x(2,3)+(1,5)x=(2,3)x | | |x|=68 | | -8n+3n(1+5n)=-6n-14 | | -1.7v+2.8=1.4v-3.1+2.8 | | ×-y=8 | | 9^x+12^x=16^x | | 7.34=p+2 | | X^4-49x^2-144=0 | | 3x-27=8x-22 | | 3x-1-62=180 | | 6x–5=15 | | 2(6-x=3)(2x+13) | | 6x-42=x-7 | | 2(6-x=3(2x+13) | | 30+80+2x=180 | | 2t+5=21 | | 5+2/x+2x-3/3=8/2 | | 2x5x=1250 | | 24x6=14 | | 8q+6=4q-18 | | 7p+9=6p-11 | | 13x-9x+20=30+20 |