If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-1=4
We move all terms to the left:
2x^2+5x-1-(4)=0
We add all the numbers together, and all the variables
2x^2+5x-5=0
a = 2; b = 5; c = -5;
Δ = b2-4ac
Δ = 52-4·2·(-5)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{65}}{2*2}=\frac{-5-\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{65}}{2*2}=\frac{-5+\sqrt{65}}{4} $
| Y=(10x4+3x)10 | | -8t=-7-7t | | 20m-2m=-17 | | 294w=600-18w | | A^2+18a+9=0 | | 35+55f=500f | | 8.2(6x–3)=7(7x–1.2) | | 5+-10p=-5p | | -2+k=-7.5 | | 2c^2+c-210=0 | | -6k=-33 | | −2(t+2)+5t=6t+11 | | -6-6c=-8c | | 77-3x=90 | | 20=-4x+3 | | X+4x+4+4x-9=180 | | -2k=11 | | 2x+14+6x-9+3x+2=180 | | 1+s=6 | | 2^3x+1=180-52 | | x+2x+8–3=13 | | 10x+7=6x-13 | | 4x+38+3x+8=180 | | -3h=-12-5 | | -5h=-20-5 | | 2(2x-6)=3x+12+x | | w+(-2)=-18w. | | 2h=8-5 | | 5x-10=-32 | | (2x)^2=16 | | 17+4x+2=1-x | | 3x^2+19x=-84 |