If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-11=180
We move all terms to the left:
2x^2+5x-11-(180)=0
We add all the numbers together, and all the variables
2x^2+5x-191=0
a = 2; b = 5; c = -191;
Δ = b2-4ac
Δ = 52-4·2·(-191)
Δ = 1553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1553}}{2*2}=\frac{-5-\sqrt{1553}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1553}}{2*2}=\frac{-5+\sqrt{1553}}{4} $
| 8-14x=134 | | 8x+4=3+6x | | -57=19d+76 | | x+6=4x-4 | | 150x+2x=2x | | 7-2(y-1)=5(y-1) | | 40-2x=90 | | y=0.15•586.6+12 | | 2x-5(x-5)=-8+5x+9 | | 90+9x=110+4x | | 8x-16=-4x+6 | | 8−6x/4=4+2x | | y=586.6•0.15+12 | | 10x+5/2=3x+6 | | 6x-22=2x+14 | | 7n−4=31n= | | 2^x=384 | | 4/5p=-16 | | 2/3(1+n)=-1/5 | | -4(2m+5-3m=35 | | B=15.00-0.09x | | 2x+22=-2x+50 | | 7g=161 | | 3(2y-1)-2=2(y+7)+1 | | 3x^2+18x=5 | | 13=20c+39 | | -1x5=9+3x | | 12y+3=13 | | 1-4x=x+2/3 | | |5x-1|-7=-3 | | 13x—x+-11x+11x+18x=-10 | | 5^2x-12(5^x)=-35 |