If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=5
We move all terms to the left:
2x^2+4x-(5)=0
a = 2; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·2·(-5)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{14}}{2*2}=\frac{-4-2\sqrt{14}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{14}}{2*2}=\frac{-4+2\sqrt{14}}{4} $
| 3v−–4=16 | | 2x-12°+4x+12=180 | | 1/2 (2x+1)=3 | | 9=9/n | | =3.4−2.8d+2.8d−1.3 | | 144=(9x)9 | | C=24r(3.14)(5) | | -76×+76=76x+76 | | 7-6×+76=76x+76 | | 14x-18=94 | | 4=k=14 | | 5x+48x+27=0 | | 2x+x+3=51 | | 168=8x^2 | | –n+–18n+17n=–8 | | -f+2+4f=8-3f−f+2+4f=8−3f= | | 15=2x+48 | | 76×+76=76x+76 | | 4+1/3x=-8 | | 13+7s=34 | | x-5/4=X/6 | | (13x-9)+(4x-11)+(2x+7)=180 | | -23=-8y+9-23 | | C=2r(3.14)(5) | | X-6x=15.5 | | 10a-1=-9+8a | | a+2a+7a=a+2a+7a= | | 14x-90=78 | | 0=x^2+5x-220 | | 25y+2=12+5y | | 3x+15=10x+8 | | 2(1x)+1/2(8x)=4 |