If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-576=0
a = 2; b = 4; c = -576;
Δ = b2-4ac
Δ = 42-4·2·(-576)
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4624}=68$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-68}{2*2}=\frac{-72}{4} =-18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+68}{2*2}=\frac{64}{4} =16 $
| 62x+1,138-40=30(40x+68) | | (3/1)+a=(4/5) | | 2x57+x=-6 | | -2(4n-3)=12 | | x+3=9+2x | | 2x-44+x+9=90 | | 7(y+4)=6y | | (x+3)^2-5=9 | | 8z+2z=9z+1 | | À=3(2-4x) | | 2x+90=4x+10 | | 38x+3,462x-22=70(50x+39) | | −5(p+3/5 )=−4 | | 2/5=x/19 | | 4/5=-28/x | | H=2a/20 | | 3x=6+3(x–2) | | 8k+3k=4k+8 | | 1/8+c=4/5 | | −0.4=g/3 −0.9 | | 2a=a+2/a | | D(g)=25g | | j+36/9=6 | | X-4+x-4=x+2 | | f-85/2=5 | | 5(8-x)=36 | | 2z=5z-78 | | 1.5h+17=2.75h+12 | | 64=h/10+59 | | 10=22-4v | | n-64/4=5 | | -3(y-7)=5y+37 |