If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-1=0
a = 2; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·2·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{6}}{2*2}=\frac{-4-2\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{6}}{2*2}=\frac{-4+2\sqrt{6}}{4} $
| 6x-18=240 | | 3(y+6)=-15 | | -4=-(g+1) | | (2^x)+(2^2x)=28 | | x^{2}+6x-21=0 | | (2^x)+2(x+1)=28 | | 4x2.8=8 | | 39/x=3 | | 39÷x=3 | | 136-x=40 | | 4x+5.20=50.40 | | 4x+50.40=5.20 | | -5/6(8+5b=75+5/3b | | 3x5/6=(3x6)x1/5=18x1/5 | | m^2−63=0 | | 2×+2y=82 | | 6(v-1)*2=96 | | 8z-(6z-5)=-13 | | X2-3.14x+1.79=0 | | 0.5(4x+20)=-10 | | 12.2x=-230.58 | | 3y-4=-2y+31 | | -3.2x=-14 | | x+5+65+90=180 | | 2x+30+40+80=180 | | 2(3x-1)=8x+6 | | 2x+115+25=180 | | 12(5+2y=4y-6=9y | | 3x+3+1=5x | | n+12.8=−0.3 | | -27+8b=15-2b | | 6(n–11)=12+4(2n–3) |