If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=54
We move all terms to the left:
2x^2+3x-(54)=0
a = 2; b = 3; c = -54;
Δ = b2-4ac
Δ = 32-4·2·(-54)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-21}{2*2}=\frac{-24}{4} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+21}{2*2}=\frac{18}{4} =4+1/2 $
| 1/11=6/x | | -44=4(5x-1) | | -8x+3=-2x+21 | | n=17,29,41,53 | | 11=24÷8x | | 130+60x=80+70x | | r-8/6=-7 | | 39+3k=-7(1-7k) | | 3x^2+28=10 | | 2×(x+3)=8 | | 10a-2a=2a*4a | | 0a-2a=2a*4a | | (x+0.470588)-9.647059=3.294118+0.529412 | | 6(a+3)=4(a-2) | | 10a-2a=2a*a | | 1/4x+3/5x=3.25 | | —8/9+x=2 | | 6(x-2)=72 | | 3(t+3)=2(t+6) | | 38+3k=-7(1-7k) | | (x+18/17)-911/17=35/17+9/17 | | 4(y-2)=2(y+4) | | 38+3k=-7(1-7k | | 2/3n+3=18 | | 59.95÷11.99=x | | 1/4x+2/5x=31/4 | | 800=256t-16^2 | | 90x+50=30+80 | | 3(2-2.5y)+2y=-5 | | n/30=9/25 | | 10x-25=300 | | 12/(x-3)-4=0 |