If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-2=0
a = 2; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·2·(-2)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-5}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+5}{2*2}=\frac{2}{4} =1/2 $
| -6+2x=5(2x+11)-x | | p-5(3)=-20 | | 2x+5=3x1 | | 6(v-3)-8v=2 | | b+2=-b+2 | | -3(x+5)=-(3x+15 | | 0.36+0.03=0.06x | | -3+4n+n=3-8n | | 2(3m+26)=4(2m+8 | | 2x-1/5=7/10 | | -3y+2=63 | | 3(x-40+6=5(x-1)+1 | | -12+15x=2(23x+36)+x | | -142=6x+6x+2 | | 2(w+4)=5w+32 | | 7n-5+7n+8=180 | | 2-15y=19;-1,0,1 | | s+31/2s+20s=56 | | w/9=24/40 | | -5a+7=38 | | 11x+5=3x+4 | | 1c+1=13 | | 4x+19+4x-2=105 | | 0.3(2z+6)+0.6=0.4(2z-4) | | -5x+15=-5x+10 | | 5m-18=4m+50 | | -5x=11.5 | | 9x^2+10=388 | | x^2+150x-40000=0 | | 2x+4x=5-6 | | 3x-5x-5=x-11 | | 7x-63=47+12x |