If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x+6=10
We move all terms to the left:
2x^2+3x+6-(10)=0
We add all the numbers together, and all the variables
2x^2+3x-4=0
a = 2; b = 3; c = -4;
Δ = b2-4ac
Δ = 32-4·2·(-4)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{41}}{2*2}=\frac{-3-\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{41}}{2*2}=\frac{-3+\sqrt{41}}{4} $
| 10x+15=5(3x-10)-5x | | 2(b+2)-13=5 | | x+3.7=6 | | w-37.8=28.5 | | 7j=10+11 | | 3x =9 | | 2(x–8)-3(x+2)=-24 | | 4x+142=x+1 | | -39=-9-6n | | -2=x-4x-5 | | -14=23b | | -8n+35=81 | | -(5-r)=13 | | 10q+7q=13+6q | | 11x^+63+162=0 | | -2=x2-4x-5 | | 3c-14=4 | | -6x-25=3x11 | | 4x+16+12=180 | | -38=-9-6n | | 2n+5=-15 | | 32x^2+128=0 | | 5+-v=1 | | -6=6(k-5)+4(8-2k) | | 12x+15=7x-25x | | 24.99=5g+3.59 | | |x-3|+5=20 | | -4x+6x=8 | | 2x-7+5x=7(x-2) | | 6(m=5) | | 3(2x+4)=-35x+20 | | 12x+15=7x-25x= |