If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-364=0
a = 2; b = 2; c = -364;
Δ = b2-4ac
Δ = 22-4·2·(-364)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-54}{2*2}=\frac{-56}{4} =-14 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+54}{2*2}=\frac{52}{4} =13 $
| -55=-13-7a | | 2.55-18=x | | 3(2+1)=-5x+14 | | 251.2=2*3.14*r | | 66+x=114 | | 3x-8=9x+12 | | 306-20=x | | 24+x=27.7 | | 5m-20=17m+4 | | 2y+8=3y-12 | | 3y-5+33=10y | | 7a+3=2a=23 | | 6m+27+6=17m | | 6m+27+6=17mm | | 1=x÷2-6 | | 23-12x=25,-8 | | 8b+40=12b-8b | | 3y-5+33=10y*y | | -2(x+2)=-12* | | 3y-5+33=10yy | | A=3.14*r² | | 6+49x=28x+43 | | 7m+8=9m-2 | | 160-20-x=180 | | 50+20x=360 | | 50x+20x+x=360 | | 50+20+x=360 | | 2/8+2/4=x/6 | | -24=-2-11r | | 4w^2-48w+63=0 | | 10+85+8x+5=180 | | h=A6 |