If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-2=0
a = 2; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·2·(-2)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*2}=\frac{-2-2\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*2}=\frac{-2+2\sqrt{5}}{4} $
| 66+99a-77=0 | | 12x-2=2+12 | | (9x+52)-(8x+26)=180 | | w+5-2(-6w-4)=5(w-1) | | 1/2x+6=-1 | | w+5-2(-6w-4)=5(w-1 | | 8y-72=−40 | | -2x+5–x–5=0 | | 3n+44=-4-5n | | -7.3v-12.4=17.08+16.03-3.6v | | X^4+7x+10=0 | | -1/5r-6=5 | | 5g+3=11g-21 | | -2(x+4)=-2x-6-2 | | 2-(-x/5)=4/5 | | 14.5z=-13.3+13.5z | | 9x-10=9x+12 | | 6(v+-7)=-66 | | 5n=7(6n+7) | | 2x+3-2=3.5x+0.5-4 | | 19z=20z-17 | | (x+9)+(x+11)=14 | | −8y-72=−40 | | 15c+2=2c+12+12c | | 10x+12=2x-20 | | 5+(-3x)=-4 | | -5-8h=19-5h | | 5d+9=4d | | 2x+0.5(6x-5)=3.5x+0.25(2x-16) | | -7n+6=-8 | | -7-5z=-7-7z | | (y-6)-(y+2)=8y |