If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-243=0
a = 2; b = 2; c = -243;
Δ = b2-4ac
Δ = 22-4·2·(-243)
Δ = 1948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1948}=\sqrt{4*487}=\sqrt{4}*\sqrt{487}=2\sqrt{487}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{487}}{2*2}=\frac{-2-2\sqrt{487}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{487}}{2*2}=\frac{-2+2\sqrt{487}}{4} $
| x+(3x+6)=100 | | 2x+2x/4+4=16 | | 25x^2+48x+25=0 | | 57=-3+4(x-3)= | | (1-x)^7-0.02=0 | | 2+7h=10h+8 | | 3−6k=-6k+3 | | 2x+2x+4=16 | | 7x+9=11x–79 | | 8m+2=-3+8m+5 | | -x+14=x | | 6j=-4+6j | | 0=t−t | | y.4y=48 | | 5(3x+4)=-60 | | 9m+7=7+9m | | 7t+2=7t | | 5/2n=-15/4 | | 14-y=6y | | 9y+32=13y | | 4x+6x=2(x+6) | | (2x/5)-1=7 | | 12x^2+25x+16=0 | | 3-3m=6 | | 7x^2=1/3x | | 3x^+16x-12=0 | | 2x+x+6=0 | | √7x-6=6 | | 13x-2(8+5.x)=12-11 | | x²-10x+21=0 | | x²+4x-20=0 | | 26-x=-17,6-3x |