If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+22x+56=0
a = 2; b = 22; c = +56;
Δ = b2-4ac
Δ = 222-4·2·56
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-6}{2*2}=\frac{-28}{4} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+6}{2*2}=\frac{-16}{4} =-4 $
| 11.5h=12.3h+9.2 | | t=3.675+2t=4.125 | | 108+-9x=27 | | 1,055=350n-(125n+30n+700 | | 0.8x=x-4 | | 2y+5y=8y+10 | | w^2+4w-285=0 | | t=2.725+2t*3.175 | | 8x+60=5x-12 | | t=3.885+2t*4.135 | | 5-5x5+5=-20 | | 3.885+2t=4.135 | | 25=3x−8 | | 5x-1+5x-1+7x+1+7x+1=109,x | | 3+1/2=ppp | | 5x-1+7x+1=109,x | | S(x)=240-8x^2 | | 50x-23=17 | | -3/1.3=-1/2g | | 5v+11=106 | | 1/5+z=3/5 | | 148=-0.8a+176 | | 40=(−74)x | | 40=(−4/7)x | | 2u+8=22 | | 3-x+8x=(-4)+x-3-1x | | 2a^2+5a=3 | | 12x+30=3 | | (3x+8)=2x+17) | | 45=3w+9 | | 22=4x-6+2x | | 2(8h+5h)-32=0 |