If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+21x-11=0
a = 2; b = 21; c = -11;
Δ = b2-4ac
Δ = 212-4·2·(-11)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-23}{2*2}=\frac{-44}{4} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+23}{2*2}=\frac{2}{4} =1/2 $
| 10x+8-5=33 | | 4(x+9)(x+9)+29(x+9)-63=0 | | 9^2x-3/3^x+3=1 | | -19-5m=-2(6-3m)+4 | | x-8=-16+3x | | 92=5v+17 | | 4(x+9)^2+29(x+9)-63=0 | | -4x+3-2x=51 | | 14x-27=59 | | 2x−40=20 | | 170=18-v | | 2(x−40)=20 | | 4(4x+2)=5x-17 | | 2r−40=20 | | 2x^2-12x+23=-23 | | 3-7x+x=15 | | 2(r−40)=20 | | 2x^2-12x+23=-é | | 2x+6=24+5x | | 26=5y-14 | | 12(4x-8)=8x-16 | | 8+2(3x-1)=x-3(3(x-14) | | 10=4n+2 | | 5(2x+4)=10(6x–8) | | 30=-x+3x+10 | | -8t^2+48t+1728=0 | | 10−2u=6 | | 2x^2-12x+46=0 | | 9^2x-3/3^x3=1 | | 135=-5(3+5n) | | 6=-4w+2(w-7) | | 3(x^2)+1=9x+1 |