If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x+18=0
a = 2; b = 20; c = +18;
Δ = b2-4ac
Δ = 202-4·2·18
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-16}{2*2}=\frac{-36}{4} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+16}{2*2}=\frac{-4}{4} =-1 $
| t=236/590 | | (x-11)=47 | | 590/236=t | | x(x-7)-5(x-2)=2 | | 64x=16x^-1 | | 7x(-x-12)=32-4x | | s/4=5;=24 | | 5^(4x)=7 | | 12×+3y=5 | | -23+y=-5 | | 5x-2=7x+13 | | -4(x-8)=-5(4+3x) | | 4.4x-1.8=4x | | x+85=230 | | 5x-4(2x+5)=10 | | 2n+81=90 | | (5x+55)/3=(3+3x)/2 | | -5-6x+8=9 | | 5(x+11)/3=3(1+x))/2 | | -75-k=-75 | | 7y+2=6y+12 | | 102+x+146+120+124+158=360 | | 6x=4x+20=10x-40 | | 103+x+133+58=360 | | 103+x+133+58=294 | | 8=2x+^4 | | -15b+21=5b=-19 | | 3=(2p–3) | | y=3y;y(2)=4 | | c=(9/5)C+32 | | 3w-38=w | | 0.0875x2-0.4x=473.4 |