If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+1=14
We move all terms to the left:
2x^2+1-(14)=0
We add all the numbers together, and all the variables
2x^2-13=0
a = 2; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·2·(-13)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{26}}{2*2}=\frac{0-2\sqrt{26}}{4} =-\frac{2\sqrt{26}}{4} =-\frac{\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{26}}{2*2}=\frac{0+2\sqrt{26}}{4} =\frac{2\sqrt{26}}{4} =\frac{\sqrt{26}}{2} $
| 2²x+1=1⁴ | | 25=0.4x+24 | | V(+)=5t | | 2+4x/5=x/3 | | 3x2x=48 | | (2+4x)/5=x/3 | | 4v=16/6 | | x*x+8x-16=0 | | 1/2x-22=1 | | 1.3x-3.6=5.8 | | 7v=8v–7 | | r^2-50r+450=0 | | 729x+1=27 | | 1/2x-22=11 | | -5n=48-n | | -7=-6x+1 | | 3x+13=347 | | 10t-6t=60 | | X^2-40x+610=300 | | −10(x−1)=10−10x | | -5n-34=-14-n | | 4x-1=512 | | 3x-14=6+x | | x+50=5(x+2) | | 10-1/4k=9 | | 1/5x+3=45 | | 3x+5x=357 | | 12+y/2=-10 | | 0.65*x=1.00 | | 16x+5x-6x=30 | | 1/2(x)(2x+8)=32 | | x-x/1,6=1600 |