If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+17x+21=0
a = 2; b = 17; c = +21;
Δ = b2-4ac
Δ = 172-4·2·21
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-11}{2*2}=\frac{-28}{4} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+11}{2*2}=\frac{-6}{4} =-1+1/2 $
| 25b=3(3b-1)-83 | | 11^-4x=14^x+8 | | 5a+7=8a+-2 | | x+4/5=19 | | 2y-3y=14 | | 0.40x=28 | | 2k/7=54/21= | | 2k/7=54/21 | | x/2=2x-21 | | 2.9x-18.76=2.7 | | -4-8n=-6(1+n) | | 2.9x118.76=2.7 | | x^2-2x-111=0 | | -12+y=5 | | |x|=0,6=x= | | 6x-7(x+5)=-3x-33 | | k-29=338 | | h-203=16 | | p/16=22 | | w-109=264 | | v-433=503 | | 28=v/15 | | 51=p-78 | | 8/12=x/72 | | 18t=666 | | 31g=496 | | m-675=273 | | v-132=115 | | 13r=455 | | k/6=19 | | c/10=9 | | k-47=44 |