If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-20=0
a = 2; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·2·(-20)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{26}}{2*2}=\frac{-16-4\sqrt{26}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{26}}{2*2}=\frac{-16+4\sqrt{26}}{4} $
| 22+3(x+5)=x+31 | | 2x+50°=65° | | -9x+5=167 | | 96=(s^2)10 | | 6(9y-1)-10(5y)-2y=22 | | 10x-8=360 | | -1=(-3+x)/8 | | 2/x=-3/24 | | 4=0.25q | | -20y=56 | | 2/x=-3/2 | | x-(-10)=25 | | 8=-52n | | -7n²+16n=8n | | 525-25x=450-30x | | 8(m-3)=-3(m+7) | | r-1.2=-1.5 | | 3x+6+4x=20 | | 63=-3(2r-3)3r | | 10y+18=8y-8 | | 24x-22=4(3-6x) | | 6n+3n=12 | | 180=4x-3 | | 24=4v+4 | | p+9=2p+3 | | 17=-(-3)+x | | 18=u/3-13 | | .80x=44 | | 2−p=1 | | 11y-7y=4 | | 5.5+n=6 | | 4x-34+3x=-3(x-2) |