If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+20=0
a = 2; b = 16; c = +20;
Δ = b2-4ac
Δ = 162-4·2·20
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{6}}{2*2}=\frac{-16-4\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{6}}{2*2}=\frac{-16+4\sqrt{6}}{4} $
| -2x-5=-3x-5 | | 12x49= | | -4u-7=5 | | r=40-20 | | 4/x+12-2/x-12=5/x^2-144 | | 20-n=n+14 | | 6e-17=5+4e | | 15.25x+0.07=15.75-0.11 | | 3b+9=-18* | | -9-10u=-9u | | -10x+90=30x-110 | | -2u-4=2 | | 3x+44=6×+14 | | 120/0.48=300/x. | | 8-5b=-37 | | d/10-1=-3 | | 2(x+1)=8(x-1) | | 4x7x25= | | 2(4x+7)=-13+19 | | 6c/2=6 | | 8+x/2=10+2x | | -75=5(w-8) | | 4(x-1)-10=-2 | | 42+12x=44 | | 3^6=9^x | | 2/3n=81/2 | | -3(2x-3)=-6x+3 | | y-4=-7/4-21/4 | | 1+2x3+4x5= | | x+x.5=8.7 | | 8m^2+16m+32=40 | | 16x^2+56x+5=0 |