If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+15x+18=0
a = 2; b = 15; c = +18;
Δ = b2-4ac
Δ = 152-4·2·18
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-9}{2*2}=\frac{-24}{4} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+9}{2*2}=\frac{-6}{4} =-1+1/2 $
| 12+3x-5=8x+-5x | | 7(1+5b)=6b+36 | | 4x+3/5-8x=0 | | x^2+87x-90=0 | | 3a+9=−45 | | 7p-18=2(1+6p) | | 5y-7=180 | | 2x+11=12x-9 | | 64t=384 | | 17-4n=-3-4(n-4) | | -7(-4w+3)-7w=5(w-1)-6 | | 9x-91+180=6x+76 | | 3x-7=7(x+3) | | 194+y=180 | | 16x+10/X=58.91 | | 1/5a=-8 | | X+5=6x+0 | | 4(3x-2)=2(6x+5)+1 | | 4x+9=25+x | | -6+4(2-3m)=-7(m+4) | | 3c+23=38 | | .3c+23=38 | | 10x2-10=800 | | |x/8|=3 | | (9x-13)(10x-19)=0 | | 6(x-3)=-3(x-3) | | 100–3x=70 | | X+6=5x-38 | | X+6=6x-38 | | 4x+25=55 | | -2x-7=x+3 | | y=13-2 |