If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x-30=0
a = 2; b = 12; c = -30;
Δ = b2-4ac
Δ = 122-4·2·(-30)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{6}}{2*2}=\frac{-12-8\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{6}}{2*2}=\frac{-12+8\sqrt{6}}{4} $
| 5(2n-3)+6=-35-3n | | y-9=107 | | 6(7)=t | | 100n^2+300n=-200 | | 14-21+196=112m-252-m | | 20=y/9+18 | | -3(2-4x)=17 | | -30+4x=-3x+40 | | (4x+9)4x=144 | | 3p=45.90 | | 10x-78=22+5x | | 13b=42 | | -10=s-5 | | 10x+2(3x-11)=23-3x | | -2p+22=12 | | p/4-5=34.5 | | 11+x+8x=20 | | 9x2-x-6=0 | | f/9-23=-28 | | x2-12+4x=0 | | Y^+y-12=0 | | (1/25)^2x=125^x-1 | | 7(3-2x)=6 | | 2.48x+14.88=29.76 | | 3/8x+3/4=x/3 | | 5n^2+14n=-8 | | 3x^2=21x-45 | | 8(-6p-4)=-48p-53 | | 5z+z=78 | | 5x-31=32-2x | | y2-1-3=0 | | 268=135-x |