If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+12x+15=0
a = 2; b = 12; c = +15;
Δ = b2-4ac
Δ = 122-4·2·15
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{6}}{2*2}=\frac{-12-2\sqrt{6}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{6}}{2*2}=\frac{-12+2\sqrt{6}}{4} $
| (x+4)(x)(4)=128 | | 9y-14=75 | | 720-360=x | | 7v+4=3+v-1 | | 7(x-2)+9=5x+2(-3+x) | | -6.4=x/5+6.1 | | X^2+8x+16=128 | | 9+x=39 | | ?x0.8=0.72 | | u/7+3.3=-14.2 | | X(x+1)=6(x-1) | | 57+7x+5+69=180 | | x+3(x^2)=528 | | y/2+2=11 | | x+47+76+63=180 | | -10=2y-2 | | 742.90=46(x+2.15) | | 8x+1+88+51=180 | | 5y+12=16 | | 10x+80+40=180 | | 4w-16=44 | | 65+x+85+40=180 | | 65+x+85+40=18 | | -13.7=x/5-1.2 | | 8x+8=3x+48 | | (1.4x-900)^2=0 | | 40+90+54+x=180 | | x+3(x*x)=528 | | 23+90+x+79=180 | | P=1.1x-2037 | | 7x+4-3x=10x+2-1x | | 24+w=72 |