If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x=0
a = 2; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·2·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*2}=\frac{0}{4} =0 $
| -8+4x+4/7x=-376/7 | | -12n-8=196 | | 9x+3+x^2=0 | | 5(3x-2)+7(x-3)=35 | | 14t–12t=10 | | 76=2x+5x+6 | | 16=v/5-12 | | -c+1=5c+5 | | (x+5)=(6x-4) | | 3h+-19h=16 | | -5(x-3)=-100 | | -2x-6=-4x-2 | | X+2-x+7=4x-x+2 | | m-4.9/2.8=-7.11 | | -4-4v=-16 | | x–4=-9+x | | 16x-2000/x^2=0 | | 2p+3p+1=-21 | | 74/9=-2/3x+4x+6 | | 3t-10=9 | | 2x1=x+11 | | 8b+5=198 | | 3x45=258 | | 16x^2-16x+170=0 | | y=3(-2)+6 | | 8r-2=10+2r | | 5x-9=5x+7 | | .8(5+5x)+4x=2 | | 25-2x=16+7x | | 8(16)-14+5y+16=180 | | X+10=2(x+4) | | 5(x+25)=205 |