If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x+11=0
a = 2; b = 10; c = +11;
Δ = b2-4ac
Δ = 102-4·2·11
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{3}}{2*2}=\frac{-10-2\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{3}}{2*2}=\frac{-10+2\sqrt{3}}{4} $
| 3x-1=x-17 | | 10+6x=3x+22 | | t-815/21=8 | | -6x+5=-5x+5 | | 24.u+3=624 | | -5y-6=19 | | 7-5x=7x-101 | | h-920/26=2 | | 7+x=7x+49 | | a=52+27 | | j+236/20=28 | | x-6=72-5x | | 5=r-829/19 | | 8z+8=88 | | y/7-24=5 | | 7j+6=34 | | 14=224/m | | −2.2−0.1c=−1.9 | | 5d-5=65 | | c-901/11=6 | | b/10-2=9 | | 3-4x=7x-74 | | 6x-15-12x+4=14x-1 | | 7w+54=726 | | 4^x+10=39 | | 4=32/g | | -8(v+7)=-2v+4 | | 4.44-(x-7)=8.88 | | -8+h=26 | | 3(x+2)=2(x=3) | | -3p=105 | | -4+k=84 |