2x2+(x-8)(x+8)-3(1-x2)=0

Simple and best practice solution for 2x2+(x-8)(x+8)-3(1-x2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x2+(x-8)(x+8)-3(1-x2)=0 equation:



2x^2+(x-8)(x+8)-3(1-x2)=0
We add all the numbers together, and all the variables
2x^2-3(-1x^2+1)+(x-8)(x+8)=0
We use the square of the difference formula
2x^2-3(-1x^2+1)+x^2-64=0
We multiply parentheses
2x^2+3x^2+x^2-3-64=0
We add all the numbers together, and all the variables
6x^2-67=0
a = 6; b = 0; c = -67;
Δ = b2-4ac
Δ = 02-4·6·(-67)
Δ = 1608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1608}=\sqrt{4*402}=\sqrt{4}*\sqrt{402}=2\sqrt{402}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{402}}{2*6}=\frac{0-2\sqrt{402}}{12} =-\frac{2\sqrt{402}}{12} =-\frac{\sqrt{402}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{402}}{2*6}=\frac{0+2\sqrt{402}}{12} =\frac{2\sqrt{402}}{12} =\frac{\sqrt{402}}{6} $

See similar equations:

| 2x+x-x-x=25 | | 50+2x=76 | | 6x=25(6x+12) | | D^2=8-4t | | 7+3y=63 | | V=(8+4)t | | 3(1-r)+5r=2(r+1 | | x+(5x-18)+90=10 | | x=41.8=52.7 | | V=8+4t | | x-45=450 | | (x+2)^2+x^2=10 | | 350=x+73 | | 8x-7+19-3x=12-6x+1+11x | | 45=-16t^2+96t+t | | ((x+4)*2)-8=x | | x/60+2(3x-1)/15+2x-1/10=3x+1/3-9 | | 2|7x–4|+3=51 | | -2=3x5+1 | | 0.965x=351 | | ((4x^2)+62x+58)=((9x^2)-54x+81) | | 5x-7÷3x=9 | | 4.905x^2+5x=50 | | 8-{x-(5+x)}=0 | | 0.65x=351 | | 2=x3-6x+2 | | (X-1)(x+6)=144 | | 4x^2+3x-48=3x^2+x | | 3(x+4)–5=x+3 | | 4z=18-11 | | 2^x=0.3 | | 0,3x-3x+0,5+2=5-3x |

Equations solver categories