2x2+(4x+6x2)=-2(3x-4)

Simple and best practice solution for 2x2+(4x+6x2)=-2(3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x2+(4x+6x2)=-2(3x-4) equation:



2x^2+(4x+6x^2)=-2(3x-4)
We move all terms to the left:
2x^2+(4x+6x^2)-(-2(3x-4))=0
We get rid of parentheses
2x^2+6x^2+4x-(-2(3x-4))=0
We calculate terms in parentheses: -(-2(3x-4)), so:
-2(3x-4)
We multiply parentheses
-6x+8
Back to the equation:
-(-6x+8)
We add all the numbers together, and all the variables
8x^2+4x-(-6x+8)=0
We get rid of parentheses
8x^2+4x+6x-8=0
We add all the numbers together, and all the variables
8x^2+10x-8=0
a = 8; b = 10; c = -8;
Δ = b2-4ac
Δ = 102-4·8·(-8)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{89}}{2*8}=\frac{-10-2\sqrt{89}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{89}}{2*8}=\frac{-10+2\sqrt{89}}{16} $

See similar equations:

| -4x-2(x+2)=-7x-4 | | 15=6+0.75x | | 4v+19=44-v | | 13r+20=180-7r | | 67-8k=4k+7 | | -17-9v=-13v+7 | | 75=10+4.5f | | 9+1x+7=10 | | 5(4x+90)=2(x+90) | | 6(x-6)=4(x+2) | | 5x+7=-2+2x | | 2x+5(-2x-1)=19 | | 5(2x-1)=3(1-x)+5x | | 4x+5(3x-1)=-62 | | 4(y-2)/3=3y-11 | | x-2(x+2)=-1 | | 5(x+12)=x+20 | | 9+1/x+7=10 | | 5x-7=-2x+2 | | (-9/5)x=(7/9)x+1/45 | | -9/5x=7/9x+1/45 | | 2*(x+5)=6x+30 | | 7-x=6x-7x | | 24-5x=16-x | | -18-3x=-12-x | | -1/3x-6=3x-30 | | 8x+21=x+42 | | 6x-5=x-45 | | 8.9t-7=9.9t+6 | | 8(u+5)-14=8u+26 | | 6(x+2)-6(6x-6)=17 | | 1/3d-6=3d-30 |

Equations solver categories