If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x/x-4+2x-5/x-3=25/3
We move all terms to the left:
2x/x-4+2x-5/x-3-(25/3)=0
Domain of the equation: x!=0We add all the numbers together, and all the variables
x∈R
2x/x+2x-5/x-4-3-(+25/3)=0
We add all the numbers together, and all the variables
2x+2x/x-5/x-7-(+25/3)=0
We get rid of parentheses
2x+2x/x-5/x-7-25/3=0
We calculate fractions
2x+(2x-15)/3x+(-25x)/3x-7=0
We multiply all the terms by the denominator
2x*3x+(2x-15)+(-25x)-7*3x=0
Wy multiply elements
6x^2+(2x-15)+(-25x)-21x=0
We get rid of parentheses
6x^2+2x-25x-21x-15=0
We add all the numbers together, and all the variables
6x^2-44x-15=0
a = 6; b = -44; c = -15;
Δ = b2-4ac
Δ = -442-4·6·(-15)
Δ = 2296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2296}=\sqrt{4*574}=\sqrt{4}*\sqrt{574}=2\sqrt{574}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{574}}{2*6}=\frac{44-2\sqrt{574}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{574}}{2*6}=\frac{44+2\sqrt{574}}{12} $
| 4+9+x=-1 | | 15-3x=4x+1 | | 7+.3x=4+.4x | | 3u+4=6 | | -2p−10=-p | | -5g+10=-6g | | 7c=9c+8 | | 2/9x+1/6x^=1 | | 34=3(y+2)+4y | | -1=-15+x | | 9y+17=6y+8 | | -2+6k=58 | | 10=2(v-3)-6v | | (y-2)^2=2y^2-7y-14 | | 8=5+3w | | 11=1+x | | -4-2x÷3=4 | | 15=4x-29 | | 3(x+8)-8x=-1 | | 5m^-17m-12=0 | | 15+5y=2y | | 21x+5=15,50 | | -48-12x=72-7x | | 5(x-2)2=80 | | y-7=2(×-1) | | -.2x+7.86=-.4x+3.86 | | 3(4x-2.9)=3x-8.7 | | -34=-6u+4(u-7) | | 24a=14 | | x(x-20)=-96 | | -7x-9=16 | | 1/7x+8=21 |