2x/x-3+x=20/x-3

Simple and best practice solution for 2x/x-3+x=20/x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x/x-3+x=20/x-3 equation:



2x/x-3+x=20/x-3
We move all terms to the left:
2x/x-3+x-(20/x-3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-3)!=0
x∈R
We add all the numbers together, and all the variables
x+2x/x-(20/x-3)-3=0
We get rid of parentheses
x+2x/x-20/x+3-3=0
We multiply all the terms by the denominator
x*x+2x+3*x-3*x-20=0
We add all the numbers together, and all the variables
2x+x*x-20=0
Wy multiply elements
x^2+2x-20=0
a = 1; b = 2; c = -20;
Δ = b2-4ac
Δ = 22-4·1·(-20)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*1}=\frac{-2-2\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*1}=\frac{-2+2\sqrt{21}}{2} $

See similar equations:

| 6d+2d+8=44 | | 6+3d=9 | | 17=17/y | | 4y²-81=0 | | k2-5k+2=0 | | 3d+13=19 | | m^2-6m=55 | | 0.075=x/250 | | (30+2x)*(30+2x)-900=256 | | 12d=63 | | x-1=5/(x+7) | | (D2+5D+6)y=9 | | 8/6=x+7/x | | 0.3=x/250 | | 550-25x=10+15x+20x= | | –2x+3+11=5+3x+6+5x | | 3(x-5)=14 | | x-1=5/x+7 | | 12/4=x+1/x | | 11/5v-9=12/v | | -4(x+2)=40 | | 7x+15=4x+39 | | 6x-9=-x-44 | | 7k+4/9=k/2 | | 5x±8=23 | | 2/3*(x-4)=0 | | 4x-16=-3x+40 | | 5/3=n+7/n | | 0.05x+925=0.03x+1250 | | 10/v=11/v-10 | | 18f=-18f-6(-6f-5) | | 6/2=r/r+3 |

Equations solver categories