If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x/4x-1+(3/2x+1)-2/2x-1=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x+1)!=0
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
2x/4x+(3/2x+1)-2/2x-2=0
We get rid of parentheses
2x/4x+3/2x-2/2x+1-2=0
We calculate fractions
4x^2/8x^2+(-8x+3)/8x^2+1-2=0
We add all the numbers together, and all the variables
4x^2/8x^2+(-8x+3)/8x^2-1=0
We multiply all the terms by the denominator
4x^2+(-8x+3)-1*8x^2=0
Wy multiply elements
4x^2-8x^2+(-8x+3)=0
We get rid of parentheses
4x^2-8x^2-8x+3=0
We add all the numbers together, and all the variables
-4x^2-8x+3=0
a = -4; b = -8; c = +3;
Δ = b2-4ac
Δ = -82-4·(-4)·3
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{7}}{2*-4}=\frac{8-4\sqrt{7}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{7}}{2*-4}=\frac{8+4\sqrt{7}}{-8} $
| 7y+9=3(y+6) | | (3x+2/x)+(2/3)=(4/x)-(3/x) | | x^2+4x-5=-8 | | x10+3=10 | | 4(x-7)=25 | | 3x+2/x+2/3=4/x-3/x | | d+20.23=40.4 | | .07x+x=1509 | | 2x+170=3x+46 | | 3/4(x-3)=5x | | 2x+2(x-4)=80 | | 2b-7=6+4b | | 37=-9x+10 | | 3×2x+4-1=6x+5 | | c=62.54+0.06 | | c/5-12=7 | | 4(y^2-60)=-49y | | 2x•X+x-7=38 | | 5/7h-1/8=2 | | 2x+X+X-7=38 | | -4f+10+14=20 | | 5(x+3)/4=3x-3 | | 16x^2-16x=201 | | |7x+13|=27 | | 3/e+3=1/8 | | 9b^2-46b+40=0 | | (2x/x+4)+(8/x+4)=0 | | -6m-1+18=24 | | 133=7(1-6n) | | 12(x-2)=18 | | (2x/x+4)=(8/x+4) | | 2/3x-3=1/3x-7 |