2x-5=-x(6+3x)

Simple and best practice solution for 2x-5=-x(6+3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-5=-x(6+3x) equation:



2x-5=-x(6+3x)
We move all terms to the left:
2x-5-(-x(6+3x))=0
We add all the numbers together, and all the variables
2x-(-x(3x+6))-5=0
We calculate terms in parentheses: -(-x(3x+6)), so:
-x(3x+6)
We multiply parentheses
-3x^2-6x
Back to the equation:
-(-3x^2-6x)
We get rid of parentheses
3x^2+6x+2x-5=0
We add all the numbers together, and all the variables
3x^2+8x-5=0
a = 3; b = 8; c = -5;
Δ = b2-4ac
Δ = 82-4·3·(-5)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{31}}{2*3}=\frac{-8-2\sqrt{31}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{31}}{2*3}=\frac{-8+2\sqrt{31}}{6} $

See similar equations:

| (1/6)^x-4=36^x | | z−5=-5+z | | x=(-22+(-270))/14 | | X(3x+20)=1463 | | 3y+27=8y-28 | | 3x+30=11x-18 | | 9(x-5)+36=9x-9 | | √(x^2-4x+40)=10 | | 37-5z=4(z-2) | | 30.5+2y=7y+19 | | 2x+1/8=3x-4/7 | | 6/5z=4/5 | | 6x-13=7x-4 | | 6(x-6)+9=6x-26 | | -3=6x-13 | | 2x-13+x+2x-7=180 | | 3x÷x+6-x÷x+5=2 | | x+x+2x120+120=180 | | 4w+-13=8w+3 | | 6v+3=3v+30 | | 1,7-0,3X=2x+1,7X | | 17−16d=-12d−19 | | 3(4+b)=12 | | 2u+52=8u-8 | | 15x+3=11x+15 | | 4+x+7=4+x | | 5x*5-7=3 | | 1/5(15x+10)=3x+2 | | j/7+31=37 | | 5(3x+4)=3(5x-2) | | p/2+4=7 | | H(t)=-16(0.91)^2+0+5.8 |

Equations solver categories