If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x-3(2x+3)/7x+(3+4x)=7/6
We move all terms to the left:
2x-3(2x+3)/7x+(3+4x)-(7/6)=0
Domain of the equation: 7x!=0We add all the numbers together, and all the variables
x!=0/7
x!=0
x∈R
2x-3(2x+3)/7x+(4x+3)-(+7/6)=0
We get rid of parentheses
2x-3(2x+3)/7x+4x+3-7/6=0
We calculate fractions
2x+4x+(-36x-54)/42x+(-49x)/42x+3=0
We add all the numbers together, and all the variables
6x+(-36x-54)/42x+(-49x)/42x+3=0
We multiply all the terms by the denominator
6x*42x+(-36x-54)+(-49x)+3*42x=0
Wy multiply elements
252x^2+(-36x-54)+(-49x)+126x=0
We get rid of parentheses
252x^2-36x-49x+126x-54=0
We add all the numbers together, and all the variables
252x^2+41x-54=0
a = 252; b = 41; c = -54;
Δ = b2-4ac
Δ = 412-4·252·(-54)
Δ = 56113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-\sqrt{56113}}{2*252}=\frac{-41-\sqrt{56113}}{504} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+\sqrt{56113}}{2*252}=\frac{-41+\sqrt{56113}}{504} $
| 0.5y-2+1.5y=8 | | 2x+40-8x÷4=12-10x | | 1=1.2^x | | 9x+9=5x-9 | | 2x-15=2x+90 | | X-9=15+3x | | 21x^2-60x+39=0 | | 13=143/h | | 5(2)^3x=17 | | 0.05a+0.06(a+2,000)=780 | | 23+4x=16-x+6 | | P^2-81p+18=0 | | -4x+8=-5 | | 5×3x=4 | | 9x+21=6x-45 | | x/54=7 | | 25xN=400 | | 5z=12-47 | | 3(a+1)=2(a+11) | | 9x+4+5x=10+3×+5x | | 18-2x=6x-70 | | 2x+220=3x+80 | | 3x^2+5x−8=0 | | 4x+7=-2x+17 | | 9w(81-9w)=81 | | 8/13=y/9 | | 4x-2+5x+10=2x=14 | | (3y+5)=4-8y+9+77 | | d=(50)(10) | | 6y=9/24= | | 2.5x=24 | | 39.28+x=87.12 |