2x-2=3x(x-1)-5(6-2x)

Simple and best practice solution for 2x-2=3x(x-1)-5(6-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x-2=3x(x-1)-5(6-2x) equation:



2x-2=3x(x-1)-5(6-2x)
We move all terms to the left:
2x-2-(3x(x-1)-5(6-2x))=0
We add all the numbers together, and all the variables
2x-(3x(x-1)-5(-2x+6))-2=0
We calculate terms in parentheses: -(3x(x-1)-5(-2x+6)), so:
3x(x-1)-5(-2x+6)
We multiply parentheses
3x^2-3x+10x-30
We add all the numbers together, and all the variables
3x^2+7x-30
Back to the equation:
-(3x^2+7x-30)
We get rid of parentheses
-3x^2+2x-7x+30-2=0
We add all the numbers together, and all the variables
-3x^2-5x+28=0
a = -3; b = -5; c = +28;
Δ = b2-4ac
Δ = -52-4·(-3)·28
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-19}{2*-3}=\frac{-14}{-6} =2+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+19}{2*-3}=\frac{24}{-6} =-4 $

See similar equations:

| -12=22+5v+2v | | 5x-43=67 | | a/4=8/6 | | 6x+10=10x-22 | | 5w-14=-2(w-7) | | |15-4x|=x | | 10x+-5+-7+5x-180=180 | | (8x)=(11x-36) | | x=10x/30+6x | | 4x=+1-9x | | -10-8c=2c | | y=3y+8+3y+12 | | 5(f−66)=95 | | 2(t-37)=58 | | 7x-5=6x-7 | | 7(v+1)=-4v-48 | | 5x+7=5x+2x-7 | | 75=5(h+9) | | x/3+11=39 | | 2(-2+14x)=(10x+2)+(17x-2) | | 90+(2b+90)+3/2b+(b+45)+b=540 | | 94=5v+9 | | 7(h+4)=56 | | 18/y=30/100 | | 21=x/3-11 | | c/5+43=47 | | (x+3)=-2 | | x+64+45+80=180 | | 81x+1=2(41x) | | 10x100=10 | | 5x10=2 | | 2(5x+10)=12x-4 |

Equations solver categories