If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x-10/x+4+3=x-2/x-3+4
We move all terms to the left:
2x-10/x+4+3-(x-2/x-3+4)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x-3+4)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x+4)!=3
x∈R
2x-10/x-(x-2/x+1)+4+3=0
We add all the numbers together, and all the variables
2x-10/x-(x-2/x+1)+7=0
We get rid of parentheses
2x-10/x-x+2/x-1+7=0
We multiply all the terms by the denominator
2x*x-x*x-1*x+7*x-10+2=0
We add all the numbers together, and all the variables
6x+2x*x-x*x-8=0
Wy multiply elements
2x^2-1x^2+6x-8=0
We add all the numbers together, and all the variables
x^2+6x-8=0
a = 1; b = 6; c = -8;
Δ = b2-4ac
Δ = 62-4·1·(-8)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{17}}{2*1}=\frac{-6-2\sqrt{17}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{17}}{2*1}=\frac{-6+2\sqrt{17}}{2} $
| 7x+3=4(3x-2)+1 | | 4(5x-1)=3x+13 | | 16x-2-16x+24=13 | | 5(2-5x)-7(4x-1)=6x-42 | | 7x-(12x-9)=21x+42 | | 7x-12x-9=21x+42 | | 7(2x+3)+x=4x-12 | | 2m^2-10m-12=0 | | 18-3x=5x+2x= | | 3(5^x)-1=75 | | 2^2x-(2x)+4=0 | | 3^2t-1=7^t+2 | | x-18+13=48 | | x-18+13=49 | | P-1/p-2+p-3/p-4=10/3 | | 2(u+3)-6u=0 | | 5t+5=100 | | 17t-2=287 | | 2x+80=144 | | Y^2-26y+140=0 | | 90x1.59=143.1 | | 3^x+3^x=804 | | h=2.5+0.75 | | 2a-5+a=180 | | 9x+6+8x+22=180 | | 2((5x+4)+(x-4))=72 | | 6x+19+4x+41=180 | | x+84+7x=180 | | 3x+21+4x+14=180 | | 14w-19w=40 | | 2x-13+49+x-20=180 | | 12y=11(y+2) |