2x+9x(X-1)=8(2x+2)-5

Simple and best practice solution for 2x+9x(X-1)=8(2x+2)-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+9x(X-1)=8(2x+2)-5 equation:



2x+9x(x-1)=8(2x+2)-5
We move all terms to the left:
2x+9x(x-1)-(8(2x+2)-5)=0
We multiply parentheses
9x^2+2x-9x-(8(2x+2)-5)=0
We calculate terms in parentheses: -(8(2x+2)-5), so:
8(2x+2)-5
We multiply parentheses
16x+16-5
We add all the numbers together, and all the variables
16x+11
Back to the equation:
-(16x+11)
We add all the numbers together, and all the variables
9x^2-7x-(16x+11)=0
We get rid of parentheses
9x^2-7x-16x-11=0
We add all the numbers together, and all the variables
9x^2-23x-11=0
a = 9; b = -23; c = -11;
Δ = b2-4ac
Δ = -232-4·9·(-11)
Δ = 925
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{925}=\sqrt{25*37}=\sqrt{25}*\sqrt{37}=5\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-5\sqrt{37}}{2*9}=\frac{23-5\sqrt{37}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+5\sqrt{37}}{2*9}=\frac{23+5\sqrt{37}}{18} $

See similar equations:

| 7x=-x+32 | | 60/600=x/100 | | -4x+5=-2x-5 | | 80+50+x+x+70=180 | | 11x-2=8x+19 | | -2y+7=-1+11 | | -6+x/4=-13 | | 1/5(x+25)=10 | | 8(c-91)=64 | | a+3^4a=21 | | 3x(x+2)=5x+10 | | 21=f/3 | | 50=10x+15−3x50=10x+15−3x | | 8x+92=148 | | 6(w-88)=72 | | -x+13=-2x+19 | | 1.7m+8=71 | | -6y+21=2y-11 | | 7(x+1-3)=21 | | r-17.5=-4.2 | | 3-5(x+4=8(2x-3 | | -7z=-70 | | 55=10+3q | | 50+2x=60 | | -8+3x=-12+14 | | 1y+2y-4=14 | | 3x-6-9x=18 | | -4x(x+5)=2(x+11) | | -5+w/3=-11 | | 103+3x=13+13x | | f=2.5 | | y+2-4=14 |

Equations solver categories