2x+9=(2x+9)(2x+9)

Simple and best practice solution for 2x+9=(2x+9)(2x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+9=(2x+9)(2x+9) equation:



2x+9=(2x+9)(2x+9)
We move all terms to the left:
2x+9-((2x+9)(2x+9))=0
We multiply parentheses ..
-((+4x^2+18x+18x+81))+2x+9=0
We calculate terms in parentheses: -((+4x^2+18x+18x+81)), so:
(+4x^2+18x+18x+81)
We get rid of parentheses
4x^2+18x+18x+81
We add all the numbers together, and all the variables
4x^2+36x+81
Back to the equation:
-(4x^2+36x+81)
We add all the numbers together, and all the variables
2x-(4x^2+36x+81)+9=0
We get rid of parentheses
-4x^2+2x-36x-81+9=0
We add all the numbers together, and all the variables
-4x^2-34x-72=0
a = -4; b = -34; c = -72;
Δ = b2-4ac
Δ = -342-4·(-4)·(-72)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2}{2*-4}=\frac{32}{-8} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2}{2*-4}=\frac{36}{-8} =-4+1/2 $

See similar equations:

| x(3x-9)=(3x+6)(x-7) | | u+3.2=6.3 | | -(3x+2)+5=-2+1+9x | | 1.56(c+5)+9.97=5.29 | | –6+3m=4m | | r-4.7=3.1 | | 3x-15=8x+25 | | k^2-k+48=0 | | 20-x2=16 | | 3(2x-5)=4x-9 | | 6=-w|8 | | 08r=64 | | 4x-2(4x+30)=16x | | 9(3c-1)+4=49 | | 2y+9.9=1.1 | | X-21x=24 | | x+(x+10)+(3x)=180 | | -4(2x-8)=-8x-32 | | 4x+6=-8x+8 | | 13+2(x-6)=19-3(x+10 | | 8=-8(y+1) | | X-21x=23.7 | | 2-6x=2(x+1) | | -18.43+2.1n=5.1n+16.97 | | 3/x24/56=3/x | | 0=0.03(s+-10) | | 2s/5-s/2=40 | | 2x/x-2=x | | 17+5x=2(4x+3)-3x | | 4x-2(4x+3)=16x | | 2(h+5)-2.38=6.38 | | 3+5(a+3)=18 |

Equations solver categories