2x+7=1/22x-2.5

Simple and best practice solution for 2x+7=1/22x-2.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+7=1/22x-2.5 equation:



2x+7=1/22x-2.5
We move all terms to the left:
2x+7-(1/22x-2.5)=0
Domain of the equation: 22x-2.5)!=0
x∈R
We get rid of parentheses
2x-1/22x+2.5+7=0
We multiply all the terms by the denominator
2x*22x+(2.5)*22x+7*22x-1=0
We multiply parentheses
2x*22x+55x+7*22x-1=0
Wy multiply elements
44x^2+55x+154x-1=0
We add all the numbers together, and all the variables
44x^2+209x-1=0
a = 44; b = 209; c = -1;
Δ = b2-4ac
Δ = 2092-4·44·(-1)
Δ = 43857
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{43857}=\sqrt{9*4873}=\sqrt{9}*\sqrt{4873}=3\sqrt{4873}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(209)-3\sqrt{4873}}{2*44}=\frac{-209-3\sqrt{4873}}{88} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(209)+3\sqrt{4873}}{2*44}=\frac{-209+3\sqrt{4873}}{88} $

See similar equations:

| 4x-85=180 | | x-2-(2x-1)=5+x-1 | | t-3=24 | | 9(x-2)-6x=9 | | 2f+6=-5-3f-9 | | n+21=146 | | 10q−6=9q | | s-16=23 | | 4y+98=11y | | -6+5n=8+3n | | -3=5+w/4 | | 5+8y=93 | | 3(x+3)^2-46=17 | | 6m+4=-3m-6m+4 | | 8-3x=2-6x | | F(x)=0.05(50)+58 | | 84+5k=11k | | 3h+2=32 | | -8+-5g=-18 | | -10+6s=7s-2 | | M-11=2z | | 8k+3=67 | | -b+10=-10-6b+9b | | 8+4(x+1)=36 | | -2-2s=-10-6s | | 3.75x-15.1=44 | | 2x+(10-(x-1.3))=20 | | 10+10c=1+3c+10c | | 12+7n=8n | | 21=-x/4 | | 9+6h=3+5h | | 40+5y=9y |

Equations solver categories