2x+50=2x(x+10)

Simple and best practice solution for 2x+50=2x(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+50=2x(x+10) equation:



2x+50=2x(x+10)
We move all terms to the left:
2x+50-(2x(x+10))=0
We calculate terms in parentheses: -(2x(x+10)), so:
2x(x+10)
We multiply parentheses
2x^2+20x
Back to the equation:
-(2x^2+20x)
We get rid of parentheses
-2x^2+2x-20x+50=0
We add all the numbers together, and all the variables
-2x^2-18x+50=0
a = -2; b = -18; c = +50;
Δ = b2-4ac
Δ = -182-4·(-2)·50
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{181}}{2*-2}=\frac{18-2\sqrt{181}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{181}}{2*-2}=\frac{18+2\sqrt{181}}{-4} $

See similar equations:

| ?X0.5+6x0.4=3.9 | | 5(n+4)=80 | | 5y=8+5y | | 4​(5x-2)=32 | | 5x=11x-14 | | -5r-30=69 | | 2=6x-16 | | 7x-8-3x-5=2x-2(4x+3) | | 30x-12=78 | | 8p-5=6p-1 | | 8n-2+5=-13 | | 7a-32=24 | | 2y-18=2 | | -14n+10=-12n-16 | | (x+243)+471=934 | | 2.75x=91 | | -9+10f=7−6f | | 9x-(2x-4)+6=-4x+5+3 | | -7(2-3x)=70 | | 6{5x-2}=78 | | 10x+1+10x+1=82 | | (1.1)^x=2 | | k/5=- | | 7(x-5)^2=63 | | 8/3x-11/12=5x-3x+49 | | v/4+4=8 | | 9c-7=20 | | 1.10^x=2 | | 3b-4/2=3 | | 5(x+7)/3=20 | | 33=x/16 | | 33=x/17 |

Equations solver categories