2x+500=2800+1/2x

Simple and best practice solution for 2x+500=2800+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+500=2800+1/2x equation:



2x+500=2800+1/2x
We move all terms to the left:
2x+500-(2800+1/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x-(1/2x+2800)+500=0
We get rid of parentheses
2x-1/2x-2800+500=0
We multiply all the terms by the denominator
2x*2x-2800*2x+500*2x-1=0
Wy multiply elements
4x^2-5600x+1000x-1=0
We add all the numbers together, and all the variables
4x^2-4600x-1=0
a = 4; b = -4600; c = -1;
Δ = b2-4ac
Δ = -46002-4·4·(-1)
Δ = 21160016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{21160016}=\sqrt{16*1322501}=\sqrt{16}*\sqrt{1322501}=4\sqrt{1322501}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4600)-4\sqrt{1322501}}{2*4}=\frac{4600-4\sqrt{1322501}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4600)+4\sqrt{1322501}}{2*4}=\frac{4600+4\sqrt{1322501}}{8} $

See similar equations:

| 2x/2+500=2800 | | 3(4-x)-(x-2)(x+1)=0 | | 0.09x+.13(x+300)=61 | | 8w−4w=16 | | 4x+200=2800 | | 2x+500=2800+x/2 | | 20x-30=90 | | 12x^2+75=0 | | 2x+500=2800-x/2 | | (x-40)*(600/x+3)=540 | | (1/3x+5)(6x)=0 | | 177-w=230 | | 12u−8u=20 | | x+8/2=6 | | -4x+4=8+4x | | (-1/7)*(-3)=x | | -x+66=163 | | .0105x+0.06(20000-x)=1740 | | 2.1(y+0.4/2.1)-0.4=y | | -3(2x+5)=4x+25 | | X+0.19x=130 | | 3x-4-12+3x+8=28 | | X^3+17x-10=0 | | -u+282=15 | | 110=1+10n-10 | | -16t^2+96t-44=0 | | 2(x+3)=-5 | | -7x+2x+3=-5x+7-4 | | 17–3x=5x+1 | | 46/9-8/5n=-5/3(4/5n-14/5) | | x^2-45*x+600=0 | | -2-5^3x=0 |

Equations solver categories