2x+5(3x2)=3x+2(4+x)+52

Simple and best practice solution for 2x+5(3x2)=3x+2(4+x)+52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+5(3x2)=3x+2(4+x)+52 equation:



2x+5(3x^2)=3x+2(4+x)+52
We move all terms to the left:
2x+5(3x^2)-(3x+2(4+x)+52)=0
determiningTheFunctionDomain 53x^2+2x-(3x+2(4+x)+52)=0
We add all the numbers together, and all the variables
53x^2+2x-(3x+2(x+4)+52)=0
We calculate terms in parentheses: -(3x+2(x+4)+52), so:
3x+2(x+4)+52
We multiply parentheses
3x+2x+8+52
We add all the numbers together, and all the variables
5x+60
Back to the equation:
-(5x+60)
We get rid of parentheses
53x^2+2x-5x-60=0
We add all the numbers together, and all the variables
53x^2-3x-60=0
a = 53; b = -3; c = -60;
Δ = b2-4ac
Δ = -32-4·53·(-60)
Δ = 12729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{12729}}{2*53}=\frac{3-\sqrt{12729}}{106} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{12729}}{2*53}=\frac{3+\sqrt{12729}}{106} $

See similar equations:

| 3x+2-9(x-1)=5x-6 | | (4/a^2-a-2)+(3/a^2-4)=2/a^2-3a+2 | | 8+24x=8(1-3x) | | 4x+22=2x-17+3x+12 | | 40-2m=34 | | 3a^2-15a+28=0 | | 2(a-1)+5=1 | | 6x/6=56/6 | | 3(t+2)=33 | | 6x+40=10 | | 14.6+3(b+10)=400 | | 5c+3(40c+10)=400 | | 3t+25.8=4.2 | | 3h+3=3(2h-4) | | 13/26=39/3x | | Y+2x=38 | | 5/3x+x=32 | | u/9=2u= | | X^3=7-4y^2 | | 10-0.4x=10+0.2x | | 51/2+1/2m=7 | | 16-2m=2 | | 7+4m=35 | | 7+4m=39 | | 3501=7x+1 | | -8-2g=-44 | | -8-2g=-14 | | 48-10m=8 | | 48-10m=-42 | | 53-2m=47 | | 53-2m=43 | | 40-m=5 |

Equations solver categories