If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+3x+3+4x^2+10+x=
We move all terms to the left:
2x+3x+3+4x^2+10+x-()=0
We add all the numbers together, and all the variables
4x^2+6x=0
a = 4; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·4·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*4}=\frac{-12}{8} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*4}=\frac{0}{8} =0 $
| 43y+12=2y-6 | | 43y+12=2y-6 | | 43y+12=2y-6 | | 43y+12=2y-6 | | 43y+12=2y-6 | | x+40=50+x+10 | | 4p+4=86 | | -102-5x=34-9x | | 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 6x^+13x^2-5x=0 | | 23−11x7=5x | | 23−11x7=5x | | 23−11x7=5x | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-w | | 3w+w÷2+1=10-1 | | 8x-12=10x+20 | | 8x-12=10x+20 | | 2/3z=2+3/2z-1/2 | | F(x)=1/2(x-1) | | x-150=-125 | | −12(2x−12)=10 | | 10x+43=15x+12 |