2x+(1/x)=4

Simple and best practice solution for 2x+(1/x)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+(1/x)=4 equation:



2x+(1/x)=4
We move all terms to the left:
2x+(1/x)-(4)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x+(+1/x)-4=0
We get rid of parentheses
2x+1/x-4=0
We multiply all the terms by the denominator
2x*x-4*x+1=0
We add all the numbers together, and all the variables
-4x+2x*x+1=0
Wy multiply elements
2x^2-4x+1=0
a = 2; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·2·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{2}}{2*2}=\frac{4-2\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{2}}{2*2}=\frac{4+2\sqrt{2}}{4} $

See similar equations:

| X³-3x²+3=0 | | 3x-3=-2x+10 | | 7/60=5/20w+11/12 | | (1/2x+3)+(1/x-1)=1/(2x+3)(x-1) | | 14^2+b^2=50^2 | | -7-14z=24 | | 2a–10–3a+18–4a=6–9a+a+2+3a | | 10/3=2x | | M^2-13=3p | | 2x+5x-9=8x-x3-6 | | 46+5x=6 | | 2x+31/4x=12x+51/2x | | -4(t-2)+7t=5t-4 | | 1=k/7-2 | | X+31=5x+9 | | (x-2)^2-4=12 | | -19c+2=-21 | | 4y+15=2y+35 | | 7=y+95 | | 15-2x+8x=5(9+x)+3x | | 5x-8x+10=-20 | | 5w/8=25 | | x/3+5=-9 | | 5^6x-3=25 | | 38-7x=-11 | | 6x+4=6(x+3) | | -.25x=-4 | | 7=-2+2x-3 | | 7w=17+-12w | | 3x-8=18+×-14 | | 6x-7-2x=-47 | | 15(8c-1)-14=118c+15 |

Equations solver categories